Image for Statistical Methods for Handling Incomplete Data

Statistical Methods for Handling Incomplete Data (Second edition)

See all formats and editions

Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. Statistical Methods for Handling Incomplete Data covers the most up-to-date statistical theories and computational methods for analyzing incomplete data.

Features

  • Uses the mean score equation as a building block for developing the theory for missing data analysis
  • Provides comprehensive coverage of computational techniques for missing data analysis
  • Presents a rigorous treatment of imputation techniques, including multiple imputation fractional imputation
  • Explores the most recent advances of the propensity score method and estimation techniques for nonignorable missing data
  • Describes a survey sampling application
  • Updated with a new chapter on Data Integration
  • Now includes a chapter on Advanced Topics, including kernel ridge regression imputation and neural network model imputation

The book is primarily aimed at researchers and graduate students from statistics, and could be used as a reference by applied researchers with a good quantitative background. It includes many real data examples and simulated examples to help readers understand the methodologies.

Read More
Special order line: only available to educational & business accounts. Sign In
£110.00
Product Details
Chapman & Hall
1000466299 / 9781000466294
eBook (Adobe Pdf)
519.54
19/11/2021
English
380 pages
Copy: 30%; print: 30%
Previous edition: 2014 Description based on CIP data; resource not viewed.